On graphs whose Laplacian matrix’s multipartite separability is invariant under graph isomorphism
نویسندگان
چکیده
منابع مشابه
On graphs whose Laplacian matrix's multipartite separability is invariant under graph isomorphism
Normalized Laplacian matrices of graphs have recently been studied in the context of quantum mechanics as density matrices of quantum systems. Of particular interest is the relationship between quantum physical properties of the density matrix and the graph theoretical properties of the underlying graph. One important aspect of density matrices is their entanglement properties, which are respon...
متن کاملMultipartite Separability of Laplacian Matrices of Graphs
Recently, Braunstein et al. [1] introduced normalized Laplacian matrices of graphs as density matrices in quantum mechanics and studied the relationships between quantum physical properties and graph theoretical properties of the underlying graphs. We provide further results on the multipartite separability of Laplacian matrices of graphs. In particular, we identify complete bipartite graphs wh...
متن کاملSeparability of Density Matrices of Graphs for Multipartite Systems
We investigate separability of Laplacian matrices of graphs when seen as density matrices. This is a family of quantum states with many combinatorial properties. We firstly show that the well-known matrix realignment criterion can be used to test separability of this type of quantum states. The criterion can be interpreted as novel graph-theoretic idea. Then, we prove that the density matrix of...
متن کاملComputing Roots of Directed Graphs is Graph Isomorphism Hard
The k-th power D of a directed graph D is defined to be the directed graph on the vertices of D with an arc from a to b in D iff one can get from a to b in D with exactly k steps. This notion is equivalent to the k-fold composition of binary relations or k-th powers of Boolean matrices. A k-th root of a directed graph D is another directed graph R with R = D. We show that for each k ≥ 2, comput...
متن کاملOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2010.06.014